Mass Production of Graphene Material and Its Industrial Applications

Dr. Cheng-Yu Hsieh
Enerage Inc.

2013.11
Product

graphene

Lithium Iron Phosphate

graphene based supercapacitor

Li-ion battery separator
Graphene (2004)

Graphene

- Thermal Conductivity => 5300 W/m • K
- Specific Surface Area => 2630 m²/g
- Resistivity => 10⁻⁶ Ω • cm
- Electron Mobility => 2 • 10⁵ cm²/V • s
- Transparency => 97.7%
- Young’s Modulus => 1050 GPa

Applications

Graphene Markets, Technologies and Opportunities 2013-2018

Graphene Markets, Technologies and Opportunities 2013-2018
USA Patent Applications

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>以申請日分析</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>29</td>
<td>66</td>
<td>127</td>
<td>392</td>
<td>309</td>
<td>351</td>
</tr>
<tr>
<td>以公告公開日分析</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>13</td>
<td>53</td>
<td>111</td>
<td>232</td>
<td>351</td>
<td>407</td>
</tr>
<tr>
<td>申請權人</td>
<td>專利件數</td>
<td>他人引證次數</td>
<td>自我引證次數</td>
<td>發明人數</td>
<td>所屬國數</td>
<td>平均專利年齡</td>
<td>活動年期</td>
<td>相對研發能力</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Business Machines Corporation</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSUNG ELECTRONICS Co., LTD.</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>97%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhana; Aruna</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>29%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOREA INSTITUTE OF SCIENCE AND TECH...</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE REGENTS OF THE UNIVERSITY OF CAL...</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>16%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSUNG TECHWIN Co., LTD.</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNKYUNKWAN UNIVERSITY FOUNDATION...</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>13%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSINGHUA UNIVERSITY</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HON HAI PRECISION INDUSTRY Co., LTD.</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAM MARSH RICE UNIVERSITY</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthesis

Bottom - Up

SiC Epitaxial

![Diagram of SiC Epitaxial Synthesis](image)

CVD

![Diagram of CVD Process](image)

C. Mattevi et al., J. Mater. Chem., 21, 3324 (2011)
Synthesis

Top - Down

Scotch tape exfoliation

Ball milling

* V. Leon et al., Chem. Commun., 47, 10936 (2011)
Top - Down

Graphite oxide reduction

\[\text{Graphite} \rightarrow \text{Graphite-OX} \rightarrow \text{Graphene-OX} \]

- i) Thermal or chemical reduction
- ii) Ultrasonication
- iii) Reduction with NaBH₄
- iv) Reduction with \(-E (V)\)

* A. Bonanni et al., TrAc Trends in Analytical Chemistry 37, 12 (2012)
Synthesis

- Thin Graphite
- Oxidation-Reduction
- Plasma
- Liquid-Phase Exfoliation
- CVD
- Epitaxial
- Scotch-Tape

Graphene Quality vs. Cost

* ID TechEx
Mass Production

Graphite

Intercalation

Acid

Oxidant

Oxidation

Graphene powder

Thermal reduction

Chemical reduction

Graphene suspension
Applications

Graphite

Graphite intercalated compound

- Multi layer graphene
 - Polymer composites
 - Graphene/rubber
 - Graphene/resin
 - Graphene/rubber
- Graphene suspension
 - Transparent component
 - Transparent conductive film
- Few layer graphene
 - Electrochemical component
 - Li-ion battery
 - Supercapacitor
 - Printed electronics
 - Coating application
- Graphene ink
 - Flexible component
 - Printed electronics
 - Coating application
Graphene Product

Few layer graphene

Multi layer graphene

Graphene ink

Graphene suspension
Application

Tap density (g/cm³)

- LFP: >1 g/cm³
- graphite: ~0.6 g/cm³
- multi layer graphene: ~0.05 g/cm³
- Few layer graphene: <0.01 g/cm³
Multi layer graphene

P-ML20

O content: < 2.5 wt%
Specific surface area: > 20 m²/g
Thickness: 10 ~ 50 nm
Lateral size: > 10 um
Applications

Graphene Lubricant

Graphene lubricant with graphene reduces friction coefficient by more than 35% compared to 10W40 lubricant.

Temperature vs. Time:
- Black line: 10W40
- Blue line: with graphene

Friction Coefficient vs. Time:
- Black line: 10W40
- Blue line: with graphene
Graphene / Polymer Composite

- Graphene / Epoxy
- Graphene / Nylon
- Graphene / PC
Graphene / Ag Paste

Resistivity (Ω-cm) vs. filler concentration (wt%)

10 wt% ML-10

<table>
<thead>
<tr>
<th></th>
<th>Silver (wt%)</th>
<th>Graphene (wt%)</th>
<th>Resin (wt%)</th>
<th>Resistivity (Ω-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA-30</td>
<td>30</td>
<td>-</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>ACA-50</td>
<td>50</td>
<td>-</td>
<td>40</td>
<td>1000</td>
</tr>
<tr>
<td>ACA-70</td>
<td>70</td>
<td>-</td>
<td>24</td>
<td>3*10^-4</td>
</tr>
<tr>
<td>GACA-30</td>
<td>30</td>
<td>10</td>
<td>56</td>
<td>5.4</td>
</tr>
<tr>
<td>GACA-50</td>
<td>50</td>
<td>10</td>
<td>40</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Application

Graphene / Carbon Fiber Composite
P-MF10

O content: 1 ~ 20 wt%
Specific surface area: > 400 m²/g
Thickness: < 3 nm
Lateral size: > 1 um
Graphene supercapacitor

AC Electrode

separator

AC Electrode

- Aqueous-0%
- Aqueous-0.5%
- Aqueous-1%

Specific capacitance (F/g)

Cycle (no.)

Capacitance retention (%)

- Blank
- 0.5wt% graphene
- 0.5wt% graphene

0 10000 20000 30000 40000
60 80 100 120 140 160 180 200
blank 0.5wt% graphene blank

0 10000 20000 30000 40000
60 80 100 120 140 160 180 200
blank 0.5wt% graphene blank

Specific capacitance (F/g)

Cycle (no.)

Capacitance retention (%)

- Blank
- 0.5wt% graphene
- 0.5wt% graphene

0 10000 20000 30000 40000
60 80 100 120 140 160 180 200
blank 0.5wt% graphene blank

Resin / Graphene composites

Resin base: SBS rubber
Graphene content: ~ 1 wt%
Sheet resistance:

$10^{14} \ \Omega/\square \Rightarrow 10^{11} \ \Omega/\square$
Graphene suspension

S-ON20

Solvent: NMP, DMSO, Terpeniol
Concentration: 150 ~ 250 ppm
Thickness: < 10 nm
Application

Graphene based supercapacitor

Graphene

Activated carbon

- Control
- Suspension

Specific capacitance (F/g)

Cycle number

Enerage Inc. - California - Taiwan
Application

$\text{Li}_{1.2}\text{Ni}_{0.4}\text{Mn}_{0.6}\text{O}_2$ electrode

Graphs:

- **Upper Graph:**
 - Title: 2^{nd} cycle, 20 mA/g
 - Data points for Bare LNMO, LNMO_G100, LNMO_G200, LNMO_G150L

- **Lower Graph:**
 - Title: Charge: 20, 45 mA/g
 - Discharge: 20, 112.5, 225, 450, 675, 1125, 2250 mA/g
 - Potential range: 2-4.6V
 - Data points for Bare LMNO, LMNO_G100, LMNO_G200, LMNO_G150L

Notes:

- Specific Capacity (mAh/g)
- Current density (mA/g)
Graphene based
Transparent Conductive Film

Substrate: glass / PET

Content: graphene / matrix resin

Transparency: > 85%

Sheet resistance: < 200 Ω/□
Graphene Ink

Content: few layer graphene conductive binder
Concentration: 250ppm ~ 10wt%
Solvent: H$_2$O, organic solvent

Graphene / Al foil

Graphene / Cu foil
Graphene Fiber

Diameter: < 10 um
Resistivity: < 10 Ω
Graphene based semiconductor

Resistance Random Access Memory

Cycle: > 100 times

HRS / LRS: > 27
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Source</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap Tube</td>
<td>USA</td>
<td>powder</td>
<td>> 275 USD/g</td>
</tr>
<tr>
<td>Graphene Supermarket</td>
<td>USA</td>
<td>powder</td>
<td>300 USD/g</td>
</tr>
<tr>
<td>Angstron</td>
<td>USA</td>
<td>powder</td>
<td>~ 300 USD/g</td>
</tr>
<tr>
<td>Graphenea</td>
<td>Spain</td>
<td>powder</td>
<td>299 EUR/g</td>
</tr>
</tbody>
</table>